Estimates of Land Subsidence Based on Analysis of Topographic Data

Presentation to Coastal Bend, GCD Wharton, Texas

By Steven Young, Ph.D., PE. PG.

Presentation Outline

- Processes that Cause Land Subsidence
- Previous Estimates of Land Subsidence
- Approach for Using Topographic Data
- Data Sources
- Estimated Land Subsidence
- Summary

Conceptualization of a Model for Land Subsidence

Discharge

- Land subsidence occurs only from clay consolidating from above
- Sand drain first and then clays
- Clays drain much slower than sands
- Subsidence = Drawdown * Compressibility
- When Water Level is less than a Presconsolidation Water Level then Clay Compressibility is non-elastic and land subsidence occurs
- Laboratory Values of Clay Compressibility ≠ Field Values of Clay Compressibility

Estimated Land Subsidence (Ratzlaff, 1982)

Simulated Land Subsidence by Houston Area Groundwater Model (HAGM) (1891-2009)

Simulated Land Subsidence by Lower Colorado River Basin (LCRB) Model

Approach for Using Topographic Data

- Land Elevation (time 1)
- Assemble measurements over area and perform statistical analysis to estimate an "average" value
- Remove outliers (very high and low values) before statistical analyses
- Point measurements of Land Elevation
 - Group across decades and across 20 30 square mile areas to increase count
 - Calculate average difference based on values between 25% and 75% percentile
- Maps of Land Elevation
 - Old Topography Maps
 - Digitize and interpolate contour maps to generate continuous set of values
 - Sample at 500-ft spacing
 - LIDAR Maps
 - Mosiac tiles
 - Sample at 500-ft spacing
 - Group points within 1 mile square areas and then average using ESRI sofware
- Identify regions of Possible Land Subsidence

National Geodectic Survey Permanent Identifier (PIDs) Locations

LIDAR (Light & raDAR) Coverage

USGS Quadrangle Maps (1951 to 1962) (5-ft to 10-ft contour interval)

Estimated Land Subsidence based on PIDS (pre 1950s)

- Zones based on Grouping of PIDS with Similar Values
- Top Value is Weighted Average
- Bottom Value is Median
- Weighted Average based on values between 25% and 75% percentile

Estimated Land Subsidence based on PIDS (1950 - 1980)

- Zones based on Grouping of PIDS with Similar Values
- Top Value is Weighted Average
- Bottom Value is Median
- Weighted Average based on values between 25% and 75% percentile

Estimated Land Subsidence Using USGS Quadrangle data

and LiDAR From HALFF

Estimated Land Subsidence Using USGS Quadrangle data and LIDAR From TNRIS

Summary

- Land subsidence has occurred during last 70 years
- Analysis of PID and LIDAR data
 - Time period from <1950 to >2010
 - Most of Wharton County has experienced about 1 foot of subsidence has occurred
 - Maximum subsidence occurred in southwest quadrant and is about 5 ft at a point and about 2.5 feet across a the area
 - Error estimated at ±0.5 feet
- Analysis of Quadrangle and LIDAR data
 - Time period from 1950-1960 to > 2010
 - Not reliable near streams
 - Indicates a smaller area in Wharton has experienced subsidence than the point data – Quadrangle data may be biased low 1-2 feet
 - Maximum subsidence occurred in southwest quadrant and is about 5.5 ft at a point and about 2.5 feet across the area
 - Error estimated at ±1.5 feet in area away from streams

